

Page 1 From 1

Java : An Object Oriented Language 2

object-oriented programming (OOP) : is a programming methodology that helps

organize complex programs through the use of inheritance, encapsulation, and polymorphism.

All computer programs consist of two elements: code and data. Furthermore, a program can be

conceptually organized around its code or around its data.

- If a program organized around its code and are written around “what is happening” this

methodology called Procedure Oriented programming.

- If a program organized around its data and are written around “who is being affected.”,

this methodology called Object Oriented programming.

The following table summarizes the main differences between the two methodologies that

govern how a program is constructed:

 Procedure Oriented

Programming

Object Oriented

Programming

Divided Into Program is divided into small

parts called functions.

Program is divided into parts

called objects.

Importance Importance is not given

to data but to functions

 Importance is given to the data rather

than functions(methods)

Approach Follows Top Down approach. Follows Bottom Up approach.

Access

Specifiers

does not have any access

specifier.

has access specifiers named Public,

Private, Protected, etc.

Data Moving data can move freely from

function to function

objects can move and communicate with

each other through member functions.

Expansion To add new data and function in

POP is not so easy.

provides an easy way to add new data

and function.

Data Access most function uses global data

for sharing that can be accessed

freely from function to function.

data cannot move easily from function to

function, it can be kept public or private

so we can control the access of data.

Data Hiding does not have any proper way

for hiding data so it is less

secure.

provides data hiding so provides more

security.

Overloading overloading is not possible. overloading is possible

Examples Example of POP are : C, VB,

FORTRAN, Pascal.

Example of OOP are : C++, JAVA,

VB.NET, C#.NET.

Page 2 From 2

Java : An Object Oriented Language 2

Abstraction

An essential element of object-oriented programming is abstraction. Humans manage complexity

through abstraction. A powerful way to manage abstraction is through the use of hierarchical

classifications.

hierarchical classifications : allows you to layer the semantics of complex systems, breaking

them into more manageable pieces.

Hierarchical abstractions of complex systems can also be applied to computer programs. The

data from a traditional process-oriented program can be transformed by abstraction into its

component objects. A sequence of process steps can become a collection of messages between

these objects. Thus, each of these objects describes its own unique behavior. You can treat these

objects as concrete entities that respond to messages telling them to do something. This is the

essence of object-oriented programming.

The Three OOP Principles

1. Encapsulation,

2. Inheritance,

3. Polymorphism.

Encapsulation : is the mechanism that binds together code and the data it manipulates,

and keeps both safe from outside interference and misuse. One way to think about

encapsulation is as a protective wrapper that prevents the code and data from being

arbitrarily accessed by other code defined outside the wrapper. Access to the code and data

inside the wrapper is tightly controlled through a well-defined interface.

The power of encapsulated code is that everyone knows how to access it and thus can use it

regardless of the implementation details—and without fear of unexpected side effects. In Java,

the basis of encapsulation is the class.

A class : defines the structure and behavior (data and code) that will be shared by a set of

objects. Each object of a given class contains the structure and behavior defined by the class, as

if it were stamped out by a mold in the shape of the class. For this reason, objects are sometimes

referred to as instances of a class. Thus, a class is a logical construct; an object has physical

reality.

When you create a class, you will specify the code and data that constitute that class.

Collectively, these elements are called members of the class. Specifically, the data defined by

the class are referred to as member variables or instance variables. The code that operates on

that data is referred to as member methods or just methods.

Page 3 From 3

Java : An Object Oriented Language 2

In properly written Java programs, the methods define

how the member variables can be used. This means that

the behavior and interface of a class are defined by the

methods that operate on its instance data. Since the

purpose of a class is to encapsulate complexity, there are

mechanisms for hiding the complexity of the

implementation inside the class. Each method or variable

in a class may be marked private or public.

The public interface of a class represents everything

that external users of the class need to know, or may

know.

The private methods and data can only be accessed by code that is a member of the class.

Therefore, any other code that is not a member of the class cannot access a private method or

variable. Since the private members of a class may only be accessed by other parts of your

program through the class’ public methods, you can ensure that no improper actions take place.

This means that the public interface should be carefully designed not to expose too much of the

inner workings of a class.

Example:

Most people naturally view the world as made

up of objects that are related to each other in a

hierarchical way, such as animals, mammals,

and dogs. If you wanted to describe animals in

an abstract way, you would say they have some

attributes, such as size, intelligence, and type of

skeletal system. Animals also have certain

behavioral aspects; they eat, breathe, and sleep. This description of attributes and behavior is the

class definition for animals.

If you wanted to describe a more specific class of animals, such as mammals, they would have

more specific attributes, such as type of teeth, and mammary glands. This is known as a subclass

of animals, where animals are referred to as mammals’ superclass. Since mammals are simply

more precisely specified animals, they inherit all of the attributes from animals. A deeply

inherited subclass inherits all of the attributes from each of its ancestors in the class hierarchy.

Inheritance interacts with encapsulation as well. If a given class encapsulates some attributes,

then any subclass will have the same attributes plus any that it adds as part of its specialization.

Inheritance : is the process by which one object acquires the properties of another object.

This is important because it supports the concept of hierarchical classification.

Page 4 From 4

Java : An Object Oriented Language 2

Polymorphism : (from Greek, meaning “many forms”) is a feature that allows one

interface to be used for a general class of actions. The specific action is determined by the

exact nature of the situation.

Example :

Consider a stack (which is a last-in, first-out list). You might have a program that requires three

types of stacks. One stack is used for integer values, one for floating-point values, and one for

characters. The algorithm that implements each stack is the same, even though the data being

stored differs. In a non–object-oriented language, you would be required to create three different

sets of stack routines, with each set using different names. However, because of polymorphism,

in Java you can specify a general set of stack routines that all share the same names.

The concept of polymorphism is often expressed by the phrase “one interface, multiple

methods.” This means design a generic interface to a group of related activities, that helps

reduce complexity by allowing the same interface to be used to specify a general class of action.

It is the compiler’s job to select the specific action (that is, method) as it applies to each situation.

You, the programmer, do not need to make this selection manually.

Polymorphism, Encapsulation, and Inheritance Work Together

A well-designed hierarchy of classes is the basis for reusing the code in which you have

invested time and effort developing and testing. Encapsulation allows you to migrate your

implementations over time without breaking the code that depends on the public interface of

your classes. Polymorphism allows you to create clean, sensible, readable, and resilient مرن

code.

A First Simple Program

/*

This is a simple Java program.

Call this file "Example.java".

*/

class Example {

// Your program begins with a call to main().

 public static void main(String args[]) {

 System.out.println("This is a simple Java program.");

}

}

The output generated by this program is shown here:

This is a simple Java program.

Page 5 From 5

Java : An Object Oriented Language 2

Important Notes

About Java programs, it is very important to keep in mind the following points.

 Case Sensitivity - Java is case sensitive, which means identifier Hello and hello would have

different meaning in Java.

 Class Names - For all class names the first letter should be in Upper Case. If several words

are used to form a name of the class, each inner word's first letter should be in Upper Case.

Example: class MyFirstJavaClass.

 Method Names - All method names should start with a Lower Case letter. If several words

are used to form the name of the method, then each inner word's first letter should be in

Upper Case. Example: public void myMethodName() .

 Main class – every Java program must contain in a main class, all code must reside inside

this class, it compose a block of statements, so, it must begin with { and end with } .

 Program File Name - Name of the program file should exactly match the class name. When

saving the file, you should save it using the class name (Remember Java is case sensitive)

and append '.java' to the end of the name (if the file name and the class name do not match,

your program will not compile). Example: Assume 'MyFirstJavaProgram' is the class name.

Then the file should be saved as 'MyFirstJavaProgram.java'

 public static void main(String args[]) - Java program processing starts from the main()

method which is a mandatory part of every Java program. Main method must begin with {

and end with }, because it contains a block of statements in it.

 Every statement in java program must end with ;. And any block must surrounded with {

and }.

 The public keyword is an access specifier, which allows the programmer to control the

visibility of class members. Public means that member may be accessed by code outside the

class in which it is declared. (The opposite of public is private, which prevents a member

from being used by code defined outside of its class.)

 The keyword static allows main() to be called without having to instantiate a particular

instance of the class.

Page 6 From 6

Java : An Object Oriented Language 2

A Second Short Program

/*

Here is another short example.

Call this file "Example2.java".

*/

class Example2 {

public static void main(String args[]) {

 int num; // this declares a variable called num

 num = 100; // this assigns num the value 100

 System.out.println("This is num: " + num);

 num = num * 2;

 System.out.print("The value of num * 2 is ");

 System.out.println(num);

}

}

When you run this program, you will see the following output:

This is num: 100

The value of num * 2 is 200

A Third Program (IF Statement)

/*

Demonstrate the if.

Call this file "IfSample.java".

*/

class IfSample {

public static void main(String args[]) {

 int x, y;

 x = 10;

 y = 20;

 if(x < y) System.out.println("x is less than y");

 x = x * 2;

 if(x == y) System.out.println("x now equal to y");

 x = x * 2;

 if(x > y) System.out.println("x now greater than y");

 // this won't display anything

 if(x == y) System.out.println("you won't see this");

}

}

Page 7 From 7

Java : An Object Oriented Language 2

The output generated by this program is shown here:

x is less than y

x now equal to y

x now greater than y

A Fourth Program (For Statement)

/*

Demonstrate the for loop.

Call this file "ForTest.java".

*/

class ForTest {

public static void main(String args[]) {

 int x;

 for(x = 0; x<10; x = x+1)

 System.out.println("This is x: " + x);

}

}

This program generates the following output:

This is x: 0

This is x: 1

This is x: 2

This is x: 3

This is x: 4

This is x: 5

This is x: 6

This is x: 7

This is x: 8

This is x: 9

Using Blocks of Code

Java allows two or more statements to be grouped into blocks of code, also called code blocks.

This is done by enclosing the statements between opening and closing curly braces.

Example:

Single statement (Non-block) Code block

if(x < y) x = x * 2;

System.out.println("this is isolated");

if(x < y) { // begin a block

 x = y;

 y = 0;

} // end of block

Page 8 From 8

Java : An Object Oriented Language 2

A Fifth Program (Block of codes)

/*

Demonstrate a block of code.

Call this file "BlockTest.java"

*/

class BlockTest {

public static void main(String args[]) {

 int x, y;

 y = 20;

 // the target of this loop is a block

 for(x = 0; x<10; x++) {

 System.out.println("This is x: " + x);

 System.out.println("This is y: " + y);

 y = y - 2;

 }

}

}

The output generated by this program is shown here:

This is x: 0

This is y: 20

This is x: 1

This is y: 18

This is x: 2

This is y: 16

This is x: 3

This is y: 14

This is x: 4

This is y: 12

This is x: 5

This is y: 10

This is x: 6

This is y: 8

This is x: 7

This is y: 6

This is x: 8

This is y: 4

This is x: 9

This is y: 2

Page 9 From 9

Java : An Object Oriented Language 2

Lexical Issues

Java programs are a collection of whitespace, identifiers, literals, comments, operators,

separators, and keywords.

Whitespace

In Java, whitespace is a space, tab, or newline.

Identifiers

1. Identifiers are used for class names, method names, and variable names.

2. All identifiers should begin with a letter (A to Z or a to z), currency character ($) or an

underscore (_).

3. After the first character, identifiers can have any combination of characters.

4. They must not begin with a number, lest they be confused with a numeric literal.

5. Most importantly, Java is case-sensitive, so VALUE is a different identifier than Value.

Some examples of valid identifiers are

AvgTemp count $test a4 __1_value _value this_is_ok

Invalid identifier names include these:

123abc 2count -salary high-temp Not/ok

Literals

A constant value in Java is created by using a literal representation of it. For example, here

are some literals:

100 98.6 'X' "This is a test"

A literal can be used anywhere a value of its type is allowed.

Comments

A comment describes or explains the operation of the program to anyone who is reading its

source code, explain how some part of the program works or what a specific feature does.

Java supports three styles of comments:

- Single-line comment. begins with a // and ends at the end of the line.

- A multiline comment. It may be several lines long, it must begin with /* and end with */.

Anything between these two comment symbols is ignored by the compiler.

- A documentation comment. This type of comment is used to produce an HTML file that

documents your program.

Page 10 From 10

Java : An Object Oriented Language 2

Separators

The Java Keywords

There are 50 keywords currently defined in the Java language (see the following table). These

keywords, combined with the syntax of the operators and separators, form the foundation of the

Java language. These keywords cannot be used as names for a variable, class, or method.

 The keywords const and goto are reserved but not used.

 Java reserves the following value: true, false, and null. You may not use these words for

the names of variables, classes, and so on.

Java Modifiers

Like other languages, it is possible to modify classes, methods, etc., by using modifiers. There

are two categories of modifiers:

 Access Modifiers: default, public , protected, private

 Non-access Modifiers: final, abstract, strictfp

Page 11 From 11

Java : An Object Oriented Language 2

Java Variables Types

Following are the types of variables in Java:

 Local Variables

 Class Variables (Static Variables)

 Instance Variables (Non-static Variables)

